ORIGINAL ARTICLE

Strong and weak hydrogen bonds in protein-ligand complexes of kinases: a comparative study

Sunil K. Panigrahi

Received: 9 October 2007/Accepted: 8 December 2007/Published online: 8 January 2008 © Springer-Verlag 2008

Abstract Strong and weak hydrogen bonds between protein and ligand are analyzed in a group of 233 X-ray crystal structures of the kinase family. These kinases are from both eukaryotic and prokaryotic organisms. The dataset comprises of 44 sub-families, out of which 35 are of human origin and the rest belong to other organisms. Interaction analysis was carried out in the active sites, defined here as a sphere of 10 Å radius around the ligand. A majority of the interactions are observed between the main chain of the protein and the ligand atoms. As a donor, the ligand frequently interacts with amino acid residues like Leu, Glu and His. As an acceptor, the ligand interacts often with Gly, and Leu. Strong hydrogen bonds N-H···O, O-H···O, N-H···N and weak bonds C-H···O, C-H···N are common between the protein and ligand. The hydrogen bond donor capacity of Gly in N-H-O and C-H-O interactions is noteworthy. Similarly, the acceptor capacity of main chain Glu is ubiquitous in several kinase subfamilies. Hydrogen bonds between protein and ligand form characteristic hydrogen bond patterns (supramolecular synthons). These synthon patterns are unique to each subfamily. The synthon locations are conserved across subfamilies due to a higher percentage of conserved sequences in the active sites. The nature of active site water molecules was studied through a novel classification scheme, based on the extent of exposure of water molecules. Water which is least exposed usually participates in hydrogen bond formation with the ligand. These findings will help structural biologists, crystallographers and medicinal chemists to design better kinase inhibitors.

S. K. Panigrahi (⋈) School of Chemistry, University of Hyderabad, Hyderabad 500 046, India e-mail: panigrahisk@yahoo.com **Keywords** Hydrogen bond · Kinase · Protein Data Bank · Supramolecular synthon · Water

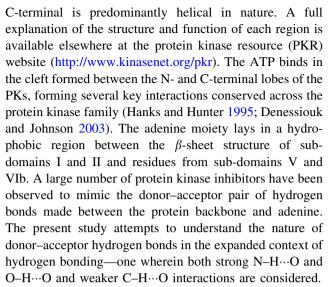
Abbreviations

PKs Protein kinases

PKR Protein kinase resource PDB Protein Data Bank

HBAT Hydrogen bond analysis toolSVL Scientific vector language

Introduction


Hydrogen bond is one of the most important interactions between biologically important molecules (Jeffrey and Saenger 1991; Baker and Hubbard 1984; Desiraju and Steiner 1999). The three-dimensional architecture of proteins and nucleic acids is stabilized by hydrogen bonds, biological recognition operates through hydrogen bonding, and the molecular mobility required for biological processes is directly connected with the rapid formation and breaking of hydrogen bonds. The importance of hydrogen bonds in substrate/ligand recognition in macromolecules is an active area of research (Sarkhel and Desiraju 2004; Panigrahi and Desiraju 2007; Aparna et al. 2005; Glusker 1995; Bartlett et al. 2002). Hydrogen bonds are observed with a variety of strengths and geometries in the active sites of protein-ligand complexes (Sarkhel and Desiraju 2004; Panigrahi and Desiraju 2007; Steiner 2002; Bartlett et al. 2002).

The existence of strong and weak hydrogen bonds in the protein-ligand complexes has been demonstrated by us earlier in a dataset of 251 protein-ligand complexes (Panigrahi and Desiraju 2007). The following are some of

the important conclusions of our earlier study: (a) the ubiquitous presence of strong and weak hydrogen bonds in the protein-ligand interface; (b) the linearity of N-H···O and O-H···O bonds; (c) the occurrence of multifurcated hydrogen bonds; (d) the resolution limits are crucial in studying hydrogen bond geometries; (e) the hydrogen bond geometry of water and amino acid residues like Gly and Tyr are significant in the active sites. These important conclusions derived from this dataset were also validated against 233 protein-ligand complexes of kinase family. In this context, there is a growing amount of literature which emphasizes the importance of strong and weak hydrogen bonds in the protein-ligand interface in protein kinases (PKs) (Pierce et al. 2002; Pierce et al. 2005). The present work aims at analyzing the strong and weak hydrogen bonds in PKs in greater detail. A comprehensive study of hydrogen bond patterns, between the main/side chain and ligand across the kinase sub-families, was carried out. The hydrogen bonds between protein and ligand form characteristic hydrogen bond patterns, which have been described through supramolecular synthon approach. The term supramolecular synthon is well known in small molecular crystallography and crystal engineering literature (Desiraju 1995). In the present study, the characteristic hydrogen bond patterns forming synthons between various scaffolds present in the ligand molecules and the main/side chain of proteins in the active site are considered. The importance of conserved residues and interactions forming hydrogen bonds in kinase sub-families are studied through the synthon approach. The water environment in the active sites was also studied.

The therapeutic usages of PKs have recently opened up many research avenues (Cohen 2002; Levitzki 2003; Bridges 2001; Vieth et al. 2004). Till date there are around 450 entries of kinases available in the PDB (Berman et al. 2000; http://www.kinasenet.org/pkr). The abundance of structural information for PKs provides an ideal background for structure-based drug discovery (Vieth et al. 2004; Williams and Mitchell 2002). Similar to various structural initiatives, online resources specific to PKs on various aspects of the kinase family are emerging con-(http://198.202.68.14/human/kinome/phylogeny. stantly http://kinasedb.ontology.ims.u-tokyo.ac.jp, mann and Matter 2002). A typical catalytic domain of kinase has 250-300 amino acids and is bilobal in nature (Hanks and Hunter 1995; Dar et al. 2005; Panigrahi and Desiraju 2004). This two-lobed structure can be further subdivided into 12 sub-domains (I-XI). The N-terminal lobe constituting sub-domains I–IV primarily has antiparallel β -sheets with the important exception of α -helix C. Sub-domain V is a single polypeptide chain known as the linker region connecting the N-terminal lobe to the larger C-terminal lobe comprising sub-domains VIA-XI. The

With this backdrop I assume that the protein-ligand interaction in the active site of PKs provides valuable information to understand the basis of molecular recognition through strong and weak hydrogen bonds. I have discussed the qualitative aspects of hydrogen bonds while describing synthon phenomena within and among the kinase sub-families. This aspect should not be weighed strictly on the basis of the quality of crystallographic data and the over-representation of data for any particular sub-family of PKs. Instead, it should be treated as a qualitative analysis of strong and weak hydrogen bonds present in the protein-ligand complexes of kinases, and its importance in drug discovery. It is hoped that these findings will help structural biologists, crystallographers and medicinal chemists to design better kinase inhibitors.

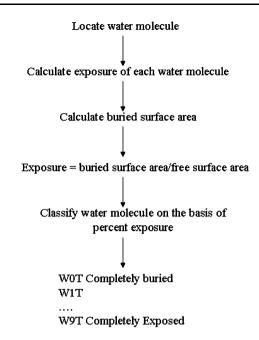
Materials and methods

Dataset

A set of 233 X-ray structures of kinase protein–ligand complexes from the PDB was used (Berman et al. 2000). This is the same dataset used as the test set in our earlier study (Panigrahi and Desiraju 2007). These structures have a resolution limit of 1.2 to 3.5 Å. The structures are classified into 44 sub-families of kinase. The classification of structure was carried out based on publicly available resources (Vieth et al. 2004; Berman et al. 2000, http://www.kinasenet.org/pkr, Wang et al. 2005). These kinases are from both eukaryotic and prokaryotic organisms. A detailed verification of the sub-family information was verified across various online databases like PKRs, PDBbind database, sugen, structure and phylogeny of the protein kinases home page. The active site was defined by

selecting all amino acid residues within a 10-Å radius of the ligand molecule. The active site also includes water molecules. The ligand selection method was taken from an earlier study (Sarkhel and Desiraju 2004).

Geometry optimization


Macromolecular crystal structures rarely contain H-atom positional data with the precision required to properly evaluate hydrogen bond geometry. Therefore a method must be found to add or modify all the H-atom positions. H-atoms were added to the protein, water and ligand using the MOE Program (2006). The H-atom positions were then refined (energy minimization) keeping the position of the non-H atoms fixed using the MMFF94x force field (Halgren 1996). All the optimized structures were exported to the hydrogen bond analysis tool (HBAT) for hydrogen bond analysis (Tiwari and Panigrahi 2007). To evaluate the accuracy of method adopted here, I have used HBAT to reproduce the published geometries in several recent papers (Sarkhel and Desiraju 2004; Brandl et al. 2001; Koellner et al. 2002; Klaholz and Moras 2002; Auffinger et al. 2004). I hope that a similar exercise applied to any system of choice will reproduce reasonably acceptable results.

Hydrogen bond analysis

Strong and weak hydrogen bonds were analyzed with an in-house developed program, HBAT, which analyzes and tabulates all hydrogen bonds present in a PDB file. The output file provides distance-angle distributions across various geometry ranges while tabulation of frequencies for each residue, ligand, water, and nucleic acids is done easily for any kind of interaction. HBAT is a user-friendly desktop tool, which operates both with default and user-selected parameters. The standard H-bonding criteria were set as d (H···A) \leq 2.8 Å and θ (X–H···A) \geq 90°. The hydrogen bond synthon analysis was carried out manually. A single structure from each sub-family was randomly selected for sequence alignment. The active site sequence alignment was carried out with the help of ClustalW (Higgins et al. 1994).

Water in the active sites of kinase

Water molecules in the active sites were classified into ten categories (W0T–W9T) based on solvent accessibility (exposure). The categorization of water is on the basis of percent exposure; for example, 0% exposure (completely

Scheme 1 Flow sheet for water classification in the active site

buried) is included in W0T, 0–10% exposure are included in W1T and so on up to 90–100% in W10T. This approach is very similar to the method adopted by Williams et al. (Williams et al. 1994). The authors have described a hierarchical classification of the extent of burial of water molecules in the protein cavity. In the present context the active sites are considered as the cavity for ligand binding. This classification scheme was carried out with the help of a scientific vector language (SVL) code written in the MOE software. An overview of the method is given in the flow sheet (Scheme 1).

Results and discussion

Hydrogen bond is the key interaction for ATP and inhibitor binding in the kinase family. This is especially true of the hydrogen bonds that involve the main chain. The initial aim of the present paper is to elucidate strong and weak hydrogen bond geometries between the main chain, side chain and the ligand. However, interactions between the main chain and the ligand are more important. This is because (a) in kinases, the hydrogen bond geometries (d and θ) involving main chains are more consistent than those formed by the side chains (Panigrahi and Desiraju 2007); (b) hydrogen bond geometries for the side chain are more flexible compared to the main chain; (c) the majority of the hydrogen bonds in the present dataset is observed between the main chain and the ligand atoms (195 out of 233 complexes); (d) main chain hydrogen bonds are crucial for proper a positioning of ligands (Aparna et al. 2005).

Residue frequency

The total number of residues present in these complexes is 66,405, that is, on average there are 285 residues present in each structure. The percentage distribution of nonpolar, charged and polar residues in the dataset is 50, 27 and 23%, respectively. The active sites contain 18,997 residues, so that each active site has around 80 residues on average. The percentage distribution for nonpolar, charged and polar residues in the active sites is 53, 27 and 20%, respectively. Among the nonpolar residues, the most frequently observed are Leu, Val, Ala and Gly. Charged residues like Lys, Glu, Asp are abundant in the active site. This finding suggests that for kinases the amino acid composition of both the entire protein and the active site is hydrophobic in nature, which is expected. However, the higher occurrence of charged residues when compared to the polar residues is uncommon (Panigrahi and Desiraju 2007). The probable reason for this observation might be the importance of electrostatic interaction in ligand binding and the nature of bound ligand. In fact, Bartlett et al. have shown in their study that, the majority of catalytic residues are charged residues in 178 enzyme active sites (Bartlett et al. 2002). Generally the charged residues are present at the surface and active sites of proteins (Gitlin et al. 2006). The percentage occurrence of various amino acid residues in the total dataset and in the active sites is shown in Fig. 1.

The total number of hydrogen bonds observed between the ligand and the main chain is 2,073. Out of the 2,073 interactions, the ligand donates hydrogen bonds in 933 cases and accepts them in 1,140 cases (Table 1). Among these interactions, 53% interactions belong to the nonpolar, 15% to the polar and 29% to the charged amino acid residues. As a donor, the frequently interacting residues are

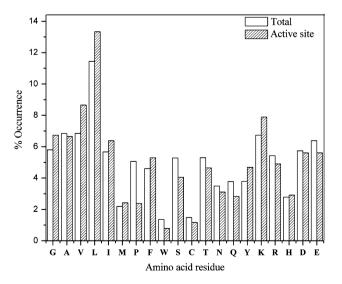


Fig. 1 Distribution of amino acid residues in total and active sites of kinases

Leu (17%), Glu (20%) and His (13%). As an acceptor, the ligand interacts with the residues, Gly (24%), and Leu (10%). These figures represent the two aspects of the donor/acceptor functional groups present in the active sites of kinases. First, the number of donor and acceptor in case of ligand suggests that there are more number of acceptor functional groups present in ligands than in donors. This is an attribute of the donor acceptor aspect in Lipinski's rule of five (Lipinski et al. 1997). Second, the percentage of amino acid types interacting with the ligand indicate that the hydrogen bond observed in the active sites of kinases are mostly contributed by the nonpolar followed by the charged and polar residues. This is because of the hydrophobic nature of the active sites and contribution of the charged residues in providing the anchoring points for ligand binding in kinases. This second aspect is represented by the nonpolar residues like Leu, Gly and charged residues like Glu and His.

The ligand interacts with the main chain through strong and weak hydrogen bonds (Table 2). For reasons of clarity, the hydrogen bond abbreviation consists of three parts: hydrogen bond type, donor, and acceptor. B stands for

Table 1 Percent contribution of main chain donor/acceptor in ligand interaction

	Ligand donor main chain acceptor (%)	Main chain donor ligand acceptor (%)
Nonpolar		
Gly	4.5	24.4
Val	5.0	5.3
Leu	17.0	10.4
Ilu	5.7	1.4
Met	3.7	4.4
Pro	1.5	0.7
Phe	2.3	7.0
Trp	0.4	0.1
Ala	4.2	5.3
Polar		
Ser	3.2	6.0
Cys	1.9	1.8
Thr	1.4	5.7
Asn	0.4	1.4
Gln	4.9	2.0
Tyr	2.4	5.0
Charged		
Lys	2.6	4.5
Asp	3.3	5.0
Arg	2.9	4.1
Glu	19.9	4.2
His	13.0	1.0
Total no.	933	1,140

Amino Acids (2008) 34:617-633

Table 2 Percent distribution of strong and weak hydrogen bonds among amino acid residues

	{NHO (%)	BD L	{CHO (%)	BD	LA}	{NHN (%)	BD	LA}	{CHN (%)	BD	LA}	{NHO (%)	LD	BA}	{CHO (%)	LD	BA}	{OHO (%)	LD	BA}
Nonpe	olar																			
Gly	20.0		41.4			0.7			17.8			2.4			4.7			10.9		
Ala	8.9		3.4			2.0			_			1.9			5.1			3.6		
Val	6.1		2.4			12.2			2.5			4.7			5.0			3.6		
Leu	4.3		3.4			40.9			20.3			27.4			14.8			5.4		
Ilu	0.2		3.9			0.7			1.7			0.5			7.6			1.8		
Met	1.9		0.5			26.5			_			3.3			4.0			_		
Pro	_		2.1			_			_			0.9			1.5			1.8		
Phe	3.4		5.3			0.7			34.7			0.5			2.6			5.4		
Trp	0.2		_			_			_			0.5			0.4			_		
Polar																				
Ser	8.3		7.2			_			_			4.2			2.8			5.4		
Cys	2.1		0.5			4.8			_			2.3			1.6			_		
Thr	12.1		1.0			-			-			0.5			1.6			_		
Asn	1.6		1.3			-			2.5			_			0.4			1.8		
Gln	0.8		4.2			4.8			0.8			1.4			5.3			12.7		
Tyr	1.9		8.2			-			14.4			0.9			2.9			3.6		
Charg	ged																			
Lys	8.3		2.1			1.4			-			5.2			1.3			7.3		
Arg	4.1		5.3			2.0			2.5			2.8			2.6			5.4		
His	0.2		1.9			0.7			0.8			8.0			15.6			1.8		
Asp	6.7		5.3			1.4			0.8			3.3			3.2			5.4		
Glu	8.3		1.0			1.3			0.8			28.9			16.8			23.6		
Total	514		397			167			118			211			611			55		

The bold indicates percentage majority

backbone, L is ligand, W is water, D is donor, and A is acceptor. For example {NHO BD LA} signifies an N-H···O hydrogen bond involving a backbone N-H donor and a ligand O-atom acceptor. As an acceptor, the ligand interacts with the main chain through strong and weak hydrogen bonds, of which {NHO BD LA} 514 interactions, {CHO BD LA} 397, {NHN BD LA} 167, {CHN BD LA}118 are noteworthy. Similarly the ligand donates hydrogen bonds to the main chain, {NHO LD BA} 211, {CHO LD BA} 611, {OHO LD BA} 55 hydrogen bonds.

The percentage of {NHO BD LA} and {CHO BD LA} hydrogen bond interactions is highest for Gly. This reiterates the importance of Gly in the active sites of protein-ligand complexes. The possible reason for the occurrence of Gly in active sites has been discussed by us earlier and has to do with the small size and large conformational flexibility of this residue (Sarkhel and Desiraju 2004; Panigrahi and Desiraju 2007). The percentage of hydrogen bonds involving {NHN BD LA} is highest for Leu. This is because Leu is one of the frequently interacting residues in the active sites of CDK2 and also because the sub-family CDK2 represents the highest number of entries (49) in the

dataset. For other types of hydrogen bonds, the percentage contribution of Leu is among the highest. The same is the case for Glu, wherein {NHO LD BA}, {CHO LD BA} and {OHO LD BA} hydrogen bonds are the most frequent. Glu is also one of the residues present at the linker region of CDK2 kinase. Apart from the CDK2 sub-family, Glu interacts commonly with ligand in other sub-families like cAMP-dependent protein kinase, PKA, FGFR1 and INSR. The importance of these two residues can be observed in Table 3. Phe interacts most frequently through {CHN BD LA} hydrogen bonds. In summary, various types of hydrogen bonds involving Gly, Leu and Glu are important in ligand binding in kinases. The Hydrogen bond geometries for {NHO BD LA} in Gly and {CHO LD BA} in Glu are shown in Fig. 2. For strong N-H···O hydrogen bonds in Gly, the median H···O distance, d, is less than 2.2 Å. The cone-corrected angular distributions for N-H···O has maxima in the range 160-165°. For the weak C-H···O hydrogen bond in Glu, the cone-corrected angular distributions have maxima in the range 165–170°. The inverse length-angle correlations are accordingly well behaved in both N-H···O and C-H···O hydrogen bonds. The weak

Table 3 Kinase protein–ligand complexes in this study. Main chain and side-chain interactions are represented by M and S, respectively. Hydrogen bond synthons are mentioned. Synthons and residues follow same order. Donor and acceptor are denoted as 'd' and 'a',

respectively. Fields left blank represent complexes where other weak interactions like halogen bonds and water mediated protein-ligand interactions are observed

S. 10.	Kinase sub-family	Source	PDB ID	M/S	Synthon type	Residue
	ADI 1	I I I I I I I I I I I I I I I I I I I	DDD ID	м	NILINI	MET210J
1	ABL1	Human	PDB ID		NHN	MET318d
2	ABL1	Human	1FPU	M	NHN	MET318d
3	ABL1	Human	1IEP	M	CHO:NHN:NHO	GLU136a:MET318d:MET318a
4 -	Adenylate kinase	Escherichia coli	1M52	M	NHN:CHO	VAL59d:VAL59a
5	Adenylate kinase	Saccharomyces cerevisiae	1AKE	M	NHN:CHO	VAL63d:VAL63a
5	Adenylate kinase	Saccharomyces cerevisiae	1AKY	M	NHO	GLN204a
7	Adenylate kinase	Zea mays	1DVR	M	NHO	ALA195a
3	BTK	Human	1ZAK	M	NHO	GLN15d
)	BTK	Human	1B55	M	NHO	GLN15d
10	cAMP-dependent protein kinase	Bos taurus	1BWN	M	NHN:CHO	VAL123d:GLU121a
11	cAMP-dependent protein kinase	Bos taurus	1SVE	M	NHN: CHO:CHO	VAL123d: VAL123a:GLU121a
12	cAMP-dependent protein kinase	Bos taurus	1VEB	M	NHN:CHO	VAL123d:GLU121a
13	cAMP-dependent protein kinase	Bos taurus	1SVH	M	NHN:CHO	VAL123d:GLU121a
14	CK2	Human	1SVG	M	СНО	VAL116a
15	CSK	Human	10M1	M	NHO	MET269d
16	c-Src	Human	1BYG	M	NHO	HIS60a
7	c-Src	Human	104A	M	NHO	HIS60a
8	c-Src	Human	1O4B	M	NHO:NHO	ARG34a:ARG34d
9	c-Src	Human	1O4D	M	NHO:NHO	ILE63d:TYR61a
20	c-Src	Human	104E	M	NHO	GLU37d
21	c-Src	Human	104F	M	NHO	GLU37d
22	c-Src	Human	104G	M	NHO	GLU37d
23	c-Src	Human	1O4H	M	NHO	GLU37d
24	c-Src	Human	1O4I	M	NHO	GLU37d
25	c-Src	Human	1O4J	M	NHO	GLU37d
26	c-Src	Human	1O4K	M	NHO	GLU37d
27	c-Src	Human	1O4L	M	NHO	GLU37d
28	c-Src	Human	1O4M	M	NHO:NHO	GLU37d:THR38d
29	c-Src	Human	104N	M	NHO	GLU37d
30	c-Src	Human	1040	M	NHO	GLU37d
31	c-Src	Human	1O4P	M	NHO	GLU37d
32	c-Src	Human	1O4Q	M	NHO:NHO	GLU37d:THR38d
3	c-Src	Human	1O4R	M	NHO	GLU37d
34	c-Src	Human	1041	M	NHO:NHO	GLU37d:HIS60a
5	c-Src	Human	1042	M	NHO:NHO	GLU37d:HIS60a
86	c-Src	Human	1043	M	NHO:NHO	GLU37d:HIS60a
37	c-Src	Human	1044	M	NHO:NHO	GLU37d:HIS60a
88	c-Src	Human	1045	M	NHO:NHO	GLU37d:HIS60a
39	c-Src	Human	1046	M	NHO:NHO	GLU37d:HIS60a
10	c-Src	Human	1047	M	NHO:NHO	GLU37d:HIS60a
11	c-Src	Human	1048	M	NHO:NHO	GLU37d:HIS60a
12	c-Src	Human	1049	M	CHO:NHN:NHO	GLU339a:MET341d:MET341a
12	SRC_RSVSA	Human	1Y57	M	NHO:NHO	GLU284d:HIS307a
13	~					

Table 3 continued

Tabl	le 3 continued					
S.	Kinase sub-family	Source	PDB ID	M/S	Synthon type	Residue
no.						
45	CDK2	Human	1NZV	M	NHO	LEU83d
46	CDK2	Human	1FVT	_	_	-
47	CDK2	Human	1P5E	M	NHO:NHN:NHO	GLU81a:LEU83d:LEU83a
48	CDK2	Human	10GU	M	CHO:NHO:NHN	GLU81a:LEU83a:LEU83a
49	CDK2	Human	1OI9	M	NHO:NHN	GLU81a:LEU83d
50	CDK2	Human	10IY	M	NHN:NHO	LEU83d:LEU83a
51	CDK2	Human	1GZ8	M	NHN:NHO:CHO	LEU83d:LEU81a: LEU81a
52	CDK2	Human	1JVP	M	CHO:NHN:NHO	GLU81a:LEU83d:LEU83a
53	CDK2	Human	1H00	M	CHO:NHN:NHO	GLU81a:LEU83d:LEU83a
54	CDK2	Human	1OIT	M	CHO:NHN:NHO	GLU81a:LEU83d:LEU83a
55	CDK2	Human	1H01	M	CHO:NHN:NHO	GLU81a:LEU83d:LEU83a
56	CDK2	Human	1H08	M	NHO:NHN:NHO	GLU81a:LEU83d:LEU83a
57	CDK2	Human	1E1X	M	CHO:NHN:NHO	GLU81a:LEU83d:LEU83a
58	CDK2	Human	1H07	M	NHO:NHO:NHO	GLU81a:LEU83d:LEU83a
59	CDK2	Human	2BHE	M	CHO:NHN:NHO	GLU81a:LEU83d:LEU83a
60	CDK2	Human	1OIR	M	NHN:NHO	LEU83d:LEU83a
61	CDK2	Human	1E1V	M	NHO:NHO	GLU81a:LEU83d
62	CDK2	Human	1AQ1	M	NHN:NHO	LEU83d:LEU83a
63	CDK2	Human	1B38	M	NHO:NHO	GLU81a:LEU83d
64	CDK2	Human	1R78	M	NHO:NHO	VAL83d:VAL83a
65	CDK2	Human	1GII	M	NHN:NHO	LEU83d:LEU83a
66	CDK2	Human	1H1S	M	CHO:NHN:NHO	GLU81a:LEU83d:LEU83a
67	CDK2	Human	1Y8Y	M	NHN:NHO	LEU83d:LEU83a
68	CDK2	Human	1H1R	M	CHO:NHO:NHN	GLU81a:LEU83a:LEU83d
69	CDK2	Human	1PYE	M	NHO:NHO:CHO	GLU81a:LEU83d:LEU83a
70	CDK2	Human	1KE6	M	NHO:NHO:NHO	GLU81a:LEU83d:LEU83a
71	CDK2	Human	1KE7	M	NHO:NHO:NHO	GLU81a:LEU83d:LEU83a
72	CDK2	Human	1KE8	M	NHO:NHO	GLU81a:LEU83d
73	CDK2	Human	1KE9	M	CHO:NHN:NHO	GLU81a:LEU83d:LEU83a
74	CDK2	Human	1CKP	M	NHO:NHN	GLU81a:LEU83d
75	CDK2	Human	1B39	M	NHO:NHO:NHO	GLU81a:LEU83d:LEU83a
76	CDK2	Human	1DM2	M	NHO:NHN	LEU83a:LEU83d
77	CDK2	Human	1H1P	M	CHO:NHN:NHO	GLU81a:LEU83d:LEU83a
78	CDK2	Human	1Y91	M	CHO:NHN:CHO	GLU81a:LEU83d:LEU83a
79	CDK2	Human	1DI8	M	NHO:NHO	VAL83d:VAL83a
80	CDK2	Human	1GIJ	M	CHO:NHN:NHO	GLU81a:LEU83d:LEU83a
81	CDK2	Human	1W0X	M	NHO:NHO:NHO	GLU81a:LEU83d:LEU83a
82	CDK2	Human	1KE5	M	NHO:NHN:NHO	GLU81a:LEU83d:LEU83a
83	CDK2	Human	1VYZ	M	CHO:NHN:NHO	GLU81a:LEU83d:LEU83a
84	CDK2	Human	1V1K	M	CHO:NHN:NHO	GLU81a:LEU83d:LEU83a
85	CDK2	Human	1OIQ	M	NHO:NHO:NHO:CHO	GLU81a:LEU83d:LEU83a:HIS84a
86	CDK2	Human	1P2A	M	NHO:NHO:NHO	GLU81a:LEU83d:LEU83a
87	CDK2	Human	1E9H	M	NHN:NHO	LEU83d:LEU83a
88	CDK2	Human	1H1Q	M	NHO:NHO	GLU81a:LEU83d
89	CDK2	Human	1PF8	M	NHO:NHO:NHO	GLU81a:LEU83d:LEU83a
90	CDK2	Human	2ВНН	M	CHO:NHN:NHO	GLU81a:LEU83d:LEU83a
91	CDK2	Human	1G5S	M	CHO:NHO:NHO	GLU81a:LEU83d:LEU83a
92	CDK2	Human	1GIH	M	CHO:NHN:NHO	GLU81a:LEU83d:LEU83a

Table 3 continued

	Tabl	e 3 continued					
	S.	Kinase sub-family	Source	PDB ID	M/S	Synthon type	Residue
94 CDK5 Human IHOW M CHO:NHN:NHO GLU81ar:CYS83d:CYS83d 95 CDK6 Herpvirus saimin IUNL M NHO VAL101d 96 CHK1 Human IXO2 M NHO:NHO GLU85a:CYS87d 97 CHK1 Human INVQ M NHO:NHO GLU85a:CYS87d 98 CHK1 Human INVQ M NHO:NHO GLU85a:CYS87d 99 C-KIT tyrosine kinase Human INVS M CHO:NHS:CHO GLU84a:VAL96a 100 Bedh-associated protein kinase Human IP46 M CHO:CHO GLU94a: VAL96a 101 EGFR Human IP47 M NHS:CHO MET969d:GLN767a 102 EGFR Human 1XK M NHO:NHO ALA564d:GLU562a 104 FGFR1 Human 1XK M NHO:NHO ALA564d:GLU562a 107 Glycerol kinase Escherichia coli 1BO5 M NHO	no.						
95 CDK6 Herpvirus saimi IUNL M NHO VAL101d 96 CHK1 Human 1XO2 M NHO/NHO GLU85α:CYS87d 97 CHK1 Human IXVQ M NHO/NHO GLU85α:CYS87d 98 CHK1 Human IXVR M NHO/NHO GLU85α:CYS87d 99 C-KIT tyrosine kinase Human IXVR M NHO/NHO GLU67la:CYS67d:CYS67d 101 EGFR Human IXVR M CHO/CHO GLU961a:CYS67d:CYS67d 102 EGFR Human IXVR M NHO/NHO ME1769d:GLN767a 102 EGFR Human IXVK M NHO/NHO AL564d:GLU562a 104 FGFR1 Human 1ACK M NHO/NHO AL564d:GLU562a 105 FGFR1 Human 1ACK M NHO/NHO AL564d:GLU562a 105 GGFR1 Human 1FG1 M NHO/NHO AL364d:GLU562a	93	CDK2	Human	1URW	M	NHO	LEU83a
96 CHK1 Human IXO2 M NHO:NHO GLU85a:CYS87d 97 CHK1 Human IVVQ M NHO:NHO GLU85a:CYS87d 98 CHK1 Human INVR M NHO:NHO GLU85a:CYS87d 99 C-KIT tyrosine kinase Human INVR M CHO:NHN:CHO GLU87a:CYS673d:CYS673a 100 Death-associated protein kinase Human IFF6 M CHO:CHO GLU97a:CYS673d:CYS673a 101 EGFR Human IFF6 M CHO:CHO GLU97a:CYS673d:CYS673a 102 EGFR Human IFF6 M CHO:CHO GLU97a:CYS677a 103 EGFR Human IBM7 M NHO:NHO MET69d:GLN791a 104 EGFR Human IBG8 M NHO:NHO ALA56d:GLU562a 105 EGFR I Human IFGI M NHO:NHO ALA56d:GLU562a 106 Glycerol kinase Escherichia coli IBO5 M	94	CDK5	Human	1H0W	M	CHO:NHN:NHO	GLU81a:CYS83d:CYS83a
97 CHKI Human INVQ M NHO:NHO GLUS5a:CYS87d 98 CHKI Human 1NVR M NHO:NHO:CHO GLUS5a:CYS87d 99 C-KIT tyrosine kinase Human 1NVS M CHO:NHN:CHO GLU671a:CYS673a!CYS673a 100 Death-associated protein kinase Human 1P4F M NHO:CHO GLU94a: VAL96a 101 EGFR Human 1M17 M NHN:CHO MET793d:GLN791a 102 EGFR Human 1M17 M NHN:CHO MET793d:GLN791a 103 FGR1 Human 1XKK M NHO:NHO ALS64d:GLU562a 104 FGFR1 Human 1FGI M NHO:NHO ALS64a:ALA564d 105 FGFR1 Human 1FGI M NHO ALS64a:ALA564d 105 GSK3b Human 1BWF - - - 106 Glycerol kinase Escherichia coli 1BO:S M NHO AL1	95	CDK6	Herpvirus saimri	1UNL	M	NHO	VAL101d
98 CHKI Human INVR M NHO:NHO GLU85a:CYS87d 99 C-KIT tyrosine kinase Human INVS M CHO:NHN:CHO GLU87a:CYS673d:CYS673a 101 Death-associated protein kinase Human ITH6 M CHO:NHN:CHO GLU87a:CYS673d:CYS673a 101 EGFR Human IMT7 M NHN:CHO ME7793d:GLN791a 102 EGRR Human IMT7 M NHO:NHO ALA564d:GLU562a 104 FGFR1 Human 1AGW MCO:NHO GLU562a:ALA564d 105 FGFR1 Human 1FGI M NHO:NHO ALA564a:ALA564d 105 Glycerol kinase Escherichia coli 1BGS M NHO ARG83d 106 Glycerol kinase Escherichia coli 1BGS M NHO ARG83d 107 Glycerol kinase Escherichia coli 1BGS M NHO ARG83d 108 GSK3b Human 1GMS M NH	96	CHK1	Human	1XO2	M	NHO:NHO	GLU85a:CYS87d
99 C-KIT tyrosine kinase Human 1746 M CHO:CHO GLU671a:CYS673d:CYS673d 100 Death-associated protein kinase Human 1746 M CHO:CHO GLU94a: VAL96a 101 EGFR Human 1747 M NHN:CHO MET793d:GLN791a 103 FGFR1 Human 1 λGW M NHO:NHO ALA564d:GLU562a 104 FGFR1 Human 1 λGW M CHO:NHO GLU562a:ALA564d 105 FGFR1 Human 1 FGI M NHO:NHO ALA564a:ALA564d 106 Glycerol kinase Escherichia coli 2 FGI M NHO GLY411d 108 GSK3b Human 1 BO5 M NHO QLY411d 108 GSK3b Human 1 GMC M NHO VAL135a:VAL135d 110 GSK3b Human 1 GMC M NHO:NHO VAL135a:VAL135d:ASP133a 111 GSK3b Human 1 Q41 M NHO:NHO:	97	CHK1	Human	INVQ	M	NHO:NHO	GLU85a:CYS87d
100 Death-associated protein kinase Human IT46 M CHO:CHO GLU94a: VAL96a 101 EGFR Human IP4F M NHN:CHO MET7694cGLN767a 102 EGFR Human IM7 M NHO:NHO MET7694cGLN791a 103 FGR1 Human 1XKK M NHO:NHO GLV562a;ALA564d 105 FGR1 Human 1AGW M CHO:NHO GLU562a;ALA564d 105 FGFR1 Human 1FGI M NHO:NHN ALA564a;ALA564d 106 Glycerol kinase Escherichia coli 1BO M NHO GLV411d 108 GSK3b Human 1BWF - - - 109 GSK3b Human 1Q3W M NHO:NHO VAL135a;VAL135d 110 GSK3b Human 1Q4I M NHO:NHO VAL135a;VAL135d;ASP133a 112 GSK3b Human 1Q4I M NHO:NHO VAL135a;VAL135d;ASP133a	98	CHK1	Human	1NVR	M	NHO:NHO	GLU85a:CYS87d
101 EGFR Human IP4F M NHN:CHO MET793d-GLN767a 102 EGFR Human IM77 M NHN:CHO MET793d-GLN761a 103 FGFR1 Human 1XKK M NHO:NHO ALA564d:GLU562a 104 FGFR1 Human 1FGI M NHO:NHO GLU562a:ALA564d 105 FGFR1 Human 1FGI M NHO ALA564a:ALA564d 106 Glycerol kinase Escherichia coli 1BOS M NHO ALA564a:ALA564d 108 GSK3b Human 1BOS M NHO ALA564a:ALA564d 108 GSK3b Human 1BOS M NHO ALA564a:ALA564d 110 GSK3b Human 1BOS M NHO ALA564a:ALA564d 110 GSK3b Human 1Q3D M NHO:NHO VAL135a:ALA564d 111 GSK3b Human 1Q4L M NHO:NHO:NHO VAL135a:AVAL135d:ASP133a </td <td>99</td> <td>C-KIT tyrosine kinase</td> <td>Human</td> <td>1NVS</td> <td>M</td> <td>CHO:NHN:CHO</td> <td>GLU671a:CYS673d:CYS673a</td>	99	C-KIT tyrosine kinase	Human	1NVS	M	CHO:NHN:CHO	GLU671a:CYS673d:CYS673a
102 EGFR Human 1M17 M NHN:CHO MET793d:GLN791a 103 FGFR1 Human 1XKK M NHO:NHO ALA564d:GLU5c2a 104 FGFR1 Human 1AGW M CHO:NHO GLU5c2a:ALA564d 105 FGFR1 Human 1FG M NHO:NHN ALA564a:ALA564d 106 Glycerol kinase Escherichia coli 2FGI M NHO ARG83d 107 Glycerol kinase Escherichia coli 1BO5 M NHO ARG83d 108 SK35b Human 1BWF - - - 109 GSK3b Human 1GNG M NHO:NHO VAL135d:ASP133a 110 GSK3b Human 1Q3W M NHO:NHO:NHO VAL135d:ASP133a 112 GSK3b Human 1Q4L M NHO:NHO:NHO VAL135d:ASP133a 112 GSK3b Human 1Q4L M NHO:NHO:NHO VAL135d:ASP133a	100	Death-associated protein kinase	Human	1T46	M	СНО:СНО	GLU94a: VAL96a
103 FGFR1 Human 1XKK M NHO:NHO ALA564d:GLU562a 104 FGFR1 Human 1AGW M CHO:NHO GLU562a:ALA564d 105 FGRI Human 1FGI M NHO:NHN ALA564a:ALA564d 106 Glycerol kinase Escherichia coli 1BO5 M NHO ARG83d 107 Glycerol kinase Escherichia coli 1BO5 M NHO GLY411d 108 GSK3b Human 1BWF - - - 109 GSK3b Human 1GMG M NHO:NHO VAL135d 110 GSK3b Human 1Q3W M NHO:NHO VAL135d:ASP133a 111 GSK3b Human 1Q4H M NHO:NHO VAL135d:ASP133a 112 GSK3b Human 1Q4K M NHO:NHO VAL135d:ASP133a 113 GSK3b Human 1Q5K M NHO:NHO VAL135d:ASP133a <td< td=""><td>101</td><td>EGFR</td><td>Human</td><td>1P4F</td><td>M</td><td>NHN:CHO</td><td>MET769d:GLN767a</td></td<>	101	EGFR	Human	1P4F	M	NHN:CHO	MET769d:GLN767a
104 FGFR1 Human 1AGW M CHO:NHO GLU562a:ALA564d 105 FGFR1 Human 1FGI M NHO:NHN ALA564a:ALA564d 106 Glycerol kinase Escherichia coli 2FGI M NHO ARG83d 108 GSK3b Human 1BWF - - 109 GSK3b Human 1GNG M NHO:NHO VAL135a:VAL135d 110 GSK3b Human 1Q3D M NHO:NHO VAL135a:VAL135d 111 GSK3b Human 1Q4I M NHO:NHO VAL135a:VAL135d:ASP133a 111 GSK3b Human 1Q4I M NHO:NHO:NHO VAL135d:ASP133a 113 GSK3b Human 1Q4L M NHO:NHO:NHO VAL135d:ASP133a 114 GSK3b Human 1Q4L M NHO:NHO:NHO VAL135d:ASP133a 115 GSK3b Human 1Q4L M NHO:NHO:NHO:NHO VAL135d:ASP133a	102	EGFR	Human	1M17	M	NHN:CHO	MET793d:GLN791a
Human	103	FGFR1	Human	1XKK	M	NHO:NHO	ALA564d:GLU562a
106 Glycerol kinase Escherichia coli 18O5 M NHO GLY411d 107 Glycerol kinase Escherichia coli 18O5 M NHO GLY411d 108 GSK3b Human 18WF 109 GSK3b Human 103D M NHO VAL135d 110 GSK3b Human 103D M NHO:NHO VAL135a:VAL135d 111 GSK3b Human 103W M NHO:NHO VAL135a:VAL135d 111 GSK3b Human 103W M NHO:NHO VAL135a:VAL135d:ASP133a 112 GSK3b Human 104L M NHO:NHO VAL135a:VAL135d:ASP133a 113 GSK3b Human 104L M NHO:NHO VAL135a:VAL135d:ASP133a 114 GSK3b Human 104L M NHO:NHO VAL135a:VAL135d:ASP133a 115 GSK3b Human 104L M NHO:NHO VAL135a:VAL135d:ASP133a 116 GK3b Human 104L M NHO:NHO VAL135a:VAL135d:ASP133a 117 Hexokinase type I Ratus norvegicus 2HCK S OHO:OHO ASP209a:ASP209a 118 JNK3 Human 1BG3 M NHN:CHO MET149d:GLU147a 119 JNK3 Human 1PMV M NHN:CHO MET149d:GLU147a 120 JNK3 Human 1PMU M NHN:CHO MET149d:GLU147a 121 JNK3 Human 1PMU M NHN:CHO MET149d:GLU147a 122 INSR Human 1PMV M NHN:CHO MET109d:GLU1077a 123 JNSR Human 1PMQ M NHN:NHO MET109d:GLU1077a 124 ERK2 Human 1FAQ M NHN:NHO MET109d:GLU1077a 125 ERK2 Ratus norvegicus 1PME M NHN:CHO MET109d:HIS106a 126 ERK2 Ratus norvegicus 1PME M NHN:CHO MET109d:HIS106a 127 ERK2 Ratus norvegicus 1PME M NHN:CHO MET109d:HIS107a 128 MAPK14 Human 1BL6 M NHN:CHO MET109d:HIS107a 131 MAPK14 Human 1BMK M NHO:CHO MET109d:HIS107a 132 MAPK14 Human 1BMK M NHO:CHO MET109d:HIS107a 133 MAPK14 Human 1BMK M NHO:CHO MET109d:HIS107a 134 MAPK14 Human 1BMK M NHO ASP168d	104	FGFR1	Human	1AGW	M	CHO:NHO	GLU562a:ALA564d
107 Gycerol kinase Escherichia coli 1805 M NHO GLY411d 108 GSK3b Human 18WF 109 GSK3b Human 1GNG M NHO VAL135d 110 GSK3b Human 1Q3D M NHO:NHO VAL135a:VAL135d 111 GSK3b Human 1Q3W M NHO:NHO:NHO VAL135a:VAL135d:ASP133a 112 GSK3b Human 1Q4I M NHO:NHO VAL135d:ASP133a 113 GSK3b Human 1Q4I M NHO:NHO VAL135d:ASP133a 114 GSK3b Human 1Q4L M NHO:NHO VAL135d:ASP133a 115 GSK3b Human 1Q5K M NHO:NHO VAL135d:ASP133a 116 HCK Human 1R0E M NHO:NHO VAL135d:ASP133a 117 Hexokinase type I Ratus norvegicus 2HCK S OHO:OHO MET341d 118 JNK3 Human 1PMN M NHN:CHO MET149d:GLU147a 119 JNK3 Human 1PMN M NHN:CHO MET149d:GLU147a 110 JNK3 Human 1PMV M NHN:CHO MET149d:GLU147a 121 JNK3 Human 1PMV M NHN:NHO MET1079d:GLU1077a 122 JNSR Human 1PMV M NHN:NHO MET1079d:GLU1077a 123 JNSR Human 1GAG M NHN:NHO MET1079d:GLU1077a 124 ERK2 Human 1GAG M NHN:NHO MET1079d:GLU1077a 125 ERK2 Human 1GAG M NHN:NHO MET1079d:GLU1077a 126 ERK2 Human 1GAG M NHN:NHO MET1079d:GLU1077a 127 ERK2 Ratus norvegicus 1PME M NHN:NHO MET1079d:GLU1077a 128 MAPK14 Human 1BL6 M NHN:CHO MET109d:HIS107a 129 MAPK14 Human 1BL6 M NHN:CHO MET109d:HIS107a 130 MAPK14 Human 1BL6 M NHN:CHO MET109d:HIS107a 131 MAPK14 Human 1BMK M NHO:CHO MET109d:HIS107a 132 MAPK14 Human 1BMK M NHO:CHO MET109d:HIS107a 133 MAPK14 Human 1BMK M NHO:CHO MET109d:HIS107a 134 MAPK14 Human 1BMK M NHO:CHO MET109d:HIS107a 135 MAPK14 Human 1BMK M NHO:CHO MET109d:HIS107a 134 MAPK14 Human 1BMK M NHO:CHO MET109d:HIS107a 135 MAPK14 Human 1BMK M NHO:CHO MET109d:HIS107a 136 MAPK14 Human 1BMK M NHO:CHO MET109d:HIS107a 137	105	FGFR1	Human	1FGI	M	NHO:NHN	ALA564a:ALA564d
108 SK33b Human 1BWF - - - 109 GSK3b Human 1GNG M NHO VAL135a; VAL135d 110 GSK3b Human 1Q3D M NHO; NHO VAL135a; VAL135d; ASP133a 111 GSK3b Human 1Q4I M NHO; NHO; NHO VAL135a; VAL135d; ASP133a 113 GSK3b Human 1Q4I M NHO; NHO; NHO VAL135a; VAL135d; ASP133a 114 GSK3b Human 1Q5K M NHO; NHO; NHO VAL135a; VAL135d; ASP133a 115 GSK3b Human 1Q5K M NHO; NHO; NHO VAL135a; VAL135d; ASP133a 116 HCK Human 1R0E M NHO; NHO; NHO VAL135a; VAL135d; ASP133a 115 GSK3b Human 1R0E M NHO; NHO; NHO VAL135a; VAL135d; ASP133a 116 HCK Human 1R0E M NHO; NHO; NHO VAL135a; VAL135d; ASP133a 117 Hexochianse type I M N	106	Glycerol kinase	Escherichia coli	2FGI	M	NHO	ARG83d
109 GSK3b Human IGNG M NHO VAL135d 110 GSK3b Human IQ3D M NHO:NHO VAL135a:VAL135d 111 GSK3b Human IQ3W M NHO:NHO:NHO VAL135a:VAL135d:ASP133a 112 GSK3b Human IQ4L M NHO:NHO VAL135d:ASP133a 113 GSK3b Human IQ4L M NHO:NHO:NHO VAL135d: VAL135d: ASP133a 114 GSK3b Human IQ4L M NHO:NHO:NHO VAL135d: VAL135d: ASP133a 115 GSK3b Human IR0E M NHO:NHO:NHO VAL135d: VAL135d: ASP133a 116 HCK Human IR0E M NHO:NHO:NHO VAL135d: VAL135d: ASP133a 116 HCK Human IR0E M NHO:NHO:NHO VAL135d: ASP133a 116 HCK Human IR0E M NHO:NHO:NHO VAL135d: ASP133a 117 HExckinase type I Rattus norvegicus 2HCK	107	Glycerol kinase	Escherichia coli	1BO5	M	NHO	GLY411d
110 GSK35b Human 1Q3D M NHO:NHO VAL135a:VAL135d 111 GSK3b Human 1Q3W M NHO:NHO:NHO VAL135a:VAL135d:ASP133a 112 GSK3b Human 1Q41 M NHO:NHO VAL135a: VAL135d: ASP133a 113 GSK3b Human 1Q4L M NHO:NHO VAL135a: VAL135d: PRO136a 114 GSK3b Human 1Q5K M NHO:NHO VAL135a: VAL135d: PRO136a 115 GSK3b Human 1Q5K M NHO:NHO VAL135a: VAL135d: ASP133a 115 GSK3b Human 1R0E M NHO:NHO VAL135a: VAL135d: ASP133a 115 GSK3b Human 1R0E M NHO:NHO VAL135a: VAL135d: ASP133a 116 HCK Human 1R0E M NHO:NHO VAL135a: VAL135d: ASP133a 116 HCK Human 1R0E M NHO:NHO ME143b: ASP103a 117 Hexokinase type I Rattus norvegicus 2HC	108	GSK3b	Human	1BWF		_	-
111 GSK3b Human 1Q3W M NHO:NHO:NHO VAL135a:VAL135d:ASP133a 112 GSK3b Human 1Q41 M NHO:NHO VAL135d:ASP133a 113 GSK3b Human 1Q4L M NHO:NHO VAL135a: VAL135d: PRO136a 114 GSK3b Human 1Q5K M NHO:NHO VAL135a: VAL135d: ASP133a 115 GSK3b Human 1R0E M NHO:NHO VAL135a: VAL135d: ASP133a 116 HCK Human 1R0E M NHO:NHO VAL135a: VAL135d: ASP133a 116 HCK Human 1R0E M NHO:NHO VAL135a: VAL135d: ASP133a 116 HCK Human 1R0E M NHO:NHO VAL135a: VAL135d: ASP133a 117 Hexx Human 1R0E M NHO:NHO VAL135a: VAL135d: ASP133a 118 JNSA Human 1BG3 M NHO:OHO MSP209a: ASP209a MSP134 117 JNSA Human 1PMV <td>109</td> <td>GSK3b</td> <td>Human</td> <td>1GNG</td> <td>M</td> <td>NHO</td> <td>VAL135d</td>	109	GSK3b	Human	1GNG	M	NHO	VAL135d
112 GSK3b Human IQ4I M NHO:NHO VAL135d:ASP133a 113 GSK3b Human 1Q4L M NHO:NHO:NHO VAL135a: VAL135d: PRO136a 114 GSK3b Human 1Q5K M NHO:NHO VAL135a: VAL135d: ASP133a 115 GSK3b Human 1UV5 M NHO:NHO VAL135a: VAL135d: ASP133a 116 HCK Human 1UV5 M NHO:NHO:NHO VAL135a: VAL135d: ASP133a 116 HCK Human 1UV5 M NHO:NHO:NHO VAL135a: VAL135d: ASP133a 116 HCK Human 1UV5 M NHO:NHO:NHO VAL135a: VAL135d: ASP133a 116 HCK Human 1UV5 M NHO:NHO:NHO VAL135a: VAL135d: ASP133a 116 HCK Human 1UV5 M NHO:NHO:NHO VAL135a: VAL135d: ASP133a 117 HEX Autus norvegicus 2HCK S OHO:OHO ASP149a:GLU147a 117 HUman 1PMV M <td>110</td> <td>GSK3b</td> <td>Human</td> <td>1Q3D</td> <td>M</td> <td>NHO:NHO</td> <td>VAL135a:VAL135d</td>	110	GSK3b	Human	1Q3D	M	NHO:NHO	VAL135a:VAL135d
113 GSK3b Human IQ4L M NHO:NHN:NHO VAL135a: VAL135d: PRO136a 114 GSK3b Human IQ5K M NHO:NHO VAL135d: ASP133a 115 GSK3b Human IR0E M NHO:NHO:NHO VAL135d: ASP133a 116 HCK Human IUV5 M NHO MET341d 117 Hexokinase type I Rattus norvegicus 2HCK S OHO:OHO ASP209a:ASP209a 118 JNK3 Human IBG3 M NHN:CHO MET149d:GLU147a 119 JNK3 Human IPMV M NHO:OHO MET149d:GLU147a 120 JNK3 Human IPMV M OHO:OHO MET149d:GLU147a 121 JNK3 Human IPMV M OHO:NHN:CHO MET149d:GLU147a 122 INSR Human IPMV M NHN:NHO MET109d:GLU1077a 123 INSR Human IPW M NHN:NHO MET109d:GLU1	111	GSK3b	Human	1Q3W	M	NHO:NHO:NHO	VAL135a:VAL135d:ASP133a
114 GSK3b Human IQ5K M NHO:NHO VAL135d:ASP133a 115 GSK3b Human IR0E M NHO:NHO:NHO VAL135d: ASP133a 116 HCK Human IUV5 M NHO MET341d 117 Hexokinase type I Rattus norvegicus 2HCK S OHO:OHO ASP209a:ASP209a 118 JNK3 Human 1BG3 M NHN:CHO MET149d:GLU147a 119 JNK3 Human 1PMV M NHN:CHO MET149d:GLU147a 120 JNK3 Human 1PMU M NHN:CHO MET149d:GLU147a 121 JNK3 Human 1PMU M NHN:CHO MET149a:MET149d:GLU147a 122 INSR Human 1PMU M NHN:NHO MET109d:GLU1077a 123 INSR Human 1RQQ M NHN:NHO MET108d:GLU1077a 124 ERK2 Human 1TVO M NHN:CHO MET108d:ASP104a	112	GSK3b	Human	1Q41	M	NHO:NHO	VAL135d:ASP133a
115 GSK3b Human 1ROE M NHO:NHO:NHO VAL135a:VAL135d: ASP133a 116 HCK Human 1UV5 M NHO MET341d 117 Hexokinase type I Rattus norvegicus 2HCK S OHO:OHO ASP209a:ASP209a 118 JNK3 Human 1BG3 M NHN:CHO MET149d:GLU147a 119 JNK3 Human 1PMV M NHN:CHO MET149d:GLU147a 120 JNK3 Human 1PMU M NHN:CHO MET149d:GLU147a 121 JNK3 Human 1PMU M NHN:CHO MET149d:GLU147a 122 INSR Human 1PMV M NHN:NHO MET109d:GLU1077a 123 INSR Human 1RQQ M NHN:NHO MET109d:GLU1077a 124 ERK2 Human 1TVO M NHN:CHO MET108d:ASP106a 125 ERK2 Rattus norvegicus 1PME M NHN:CHO MET109d:HIS	113	GSK3b	Human	1Q4L	M	NHO:NHN:NHO	VAL135a : VAL135d: PRO136a
116 HCK Human IUV5 M NHO MET341d 117 Hexokinase type I Rattus norvegicus 2HCK S OHO:OHO ASP209a:ASP209a 118 JNK3 Human 1BG3 M NHN:CHO MET149d:GLU147a 119 JNK3 Human 1PMU M NHN:CHO MET149d:GLU147a 120 JNK3 Human 1PMU M NHN:CHO MET149d:GLU147a 121 JNK3 Human 1PMQ M CHO:NHN:CHO MET149a:MET149d:GLU147a 122 INSR Human 1PMQ M NHN:NHO MET1079d:GLU1077a 123 INSR Human 1RQQ M NHN:NHO MET108d:ASP106a 124 ERK2 Human 1TVO M NHN:CHO MET108d:ASP106a 125 ERK2 Rattus norvegicus 1PME M NHN:NHO MET106d:ASP104a 126 ERK2 Rattus norvegicus 3ERK M CHO:NHN:NHO <	114	GSK3b	Human	1Q5K	M	NHO:NHO	VAL135d:ASP133a
117 Hexokinase type I Rattus norvegicus 2HCK S OHO:OHO ASP209a:ASP209a 118 JNK3 Human 1BG3 M NHN:CHO MET149d:GLU147a 119 JNK3 Human 1PMV M NHN:CHO MET149d: MET149a 120 JNK3 Human 1PMU M NHN:CHO MET149d:GLU147a 121 JNK3 Human 1PMQ M CHO:NHN:CHO MET149d:GLU147a 122 INSR Human 1PMV M NHN:NHO MET1079d:GLU1077a 123 INSR Human 1RQQ M NHN:NHO MET108d:ASP106a 124 ERK2 Human 1GAG M NHN:NHO MET108d:HIS106a 125 ERK2 Human 1TVO M NHN:CHO MET108d:HIS106a 126 ERK2 Rattus norvegicus 3ERK M CHO:NHN:NHO ASP104a:MET106d:MET106a 128 MAPK14 Human 1BL6 M NHN:CHO	115	GSK3b	Human	1R0E	M	NHO:NHO:NHO	VAL135a:VAL135d: ASP133a
118 JNK3 Human 1BG3 M NHN:CHO MET149d:GLU147a 119 JNK3 Human IPMN M NHN:CHO MET149d: MET149a 120 JNK3 Human IPMU M NHN:CHO MET149d:GLU147a 121 JNK3 Human IPMQ M CHO:NHN:CHO MET149a:MET149d:GLU147a 122 INSR Human IPMV M NHN:NHO MET1079d:GLU1077a 123 INSR Human IRQQ M NHN:NHO MET108d:ASP106a 124 ERK2 Human ITVO M NHN:CHO MET108d:HIS106a 125 ERK2 Human ITVO M NHN:CHO MET108d:HIS106a 126 ERK2 Rattus norvegicus IPME M NHN:NHO ASP104a:MET106d:MET106a 128 MAPK14 Human 4ERK M NHN:CHO MET109d:HIS107a 130 MAPK14 Human 1BL6 M NHN:CHO MET109d:HIS1	116	HCK	Human	1UV5	M	NHO	MET341d
119 JNK3 Human IPMN M NHN:CHO MET149d: MET149a 120 JNK3 Human IPMU M NHN:CHO MET149d:GLU147a 121 JNK3 Human IPMQ M CHO:NHN:CHO MET149a:MET149d:GLU147a 122 INSR Human IPMV M NHN:NHO MET1079d:GLU1077a 123 INSR Human IRQQ M NHN:NHO MET108d:ASP106a 124 ERK2 Human ITVO M NHN:CHO MET108d:HIS106a 125 ERK2 Human ITVO M NHN:CHO MET106d:ASP104a 126 ERK2 Rattus norvegicus JPME M NHN:NHO ASP104a:MET106d:MET106a 128 MAPK14 Human 4ERK M NHN:CHO MET109d:HIS107a 130 MAPK14 Human 1BL6 M NHN:CHO MET109d:HIS107a 131 MAPK14 Human 1BMK M NHO ASP168d	117	Hexokinase type I	Rattus norvegicus	2HCK	S	ОНО:ОНО	ASP209a:ASP209a
120 JNK3 Human 1PMU M NHN:CHO MET149d:GLU147a 121 JNK3 Human 1PMQ M CHO:NHN:CHO MET149a:MET149d:GLU147a 122 INSR Human 1PMV M NHN:NHO MET1079d:GLU1077a 123 INSR Human 1RQQ M NHN:NHO MET108d:ASP106a 124 ERK2 Human 1TVO M NHN:CHO MET108d:HIS106a 125 ERK2 Human 1TVO M NHN:NHO MET106d:ASP104a 126 ERK2 Rattus norvegicus 1PME M NHN:NHO MET106d:ASP104a 127 ERK2 Rattus norvegicus 3ERK M CHO:NHN:NHO ASP104a:MET106d:MET106a 128 MAPK14 Human 4ERK M NHN:CHO MET109d:HIS107a 130 MAPK14 Human 1BL6 M NHN:CHO MET109d:HIS107a 131 MAPK14 Human 1BMK M NHO <td< td=""><td>118</td><td>JNK3</td><td>Human</td><td>1BG3</td><td>M</td><td>NHN:CHO</td><td>MET149d:GLU147a</td></td<>	118	JNK3	Human	1BG3	M	NHN:CHO	MET149d:GLU147a
121 JNK3 Human 1PMQ M CHO:NHN:CHO MET149a:MET149d:GLU147a 122 INSR Human 1PMV M NHN:NHO MET1079d:GLU1077a 123 INSR Human 1RQQ M NHN:NHO MET108d:ASP106a 124 ERK2 Human 1TVO M NHN:CHO MET108d:HIS106a 125 ERK2 Human 1TVO M NHN:NHO MET106d:ASP104a 126 ERK2 Rattus norvegicus 3ERK M CHO:NHN:NHO ASP104a:MET106d:MET106a 128 MAPK14 Human 4ERK M NHN:CHO MET109d:HIS107a 129 MAPK14 Human 1BL6 M NHN:CHO MET109d:HIS107a 131 MAPK14 Human 1BMK M NHO ASP168d 132 MAPK14 Human 1BMK M NHO ASP168d	119	JNK3	Human	1PMN	M	NHN:CHO	MET149d: MET149a
122 INSR Human 1PMV M NHN:NHO MET1079d:GLU1077a 123 INSR Human IRQQ M NHN:NHO MET1079d:GLU1077a 124 ERK2 Human 1GAG M NHN:NHO MET108d:ASP106a 125 ERK2 Human 1TVO M NHN:CHO MET108d:HIS106a 126 ERK2 Rattus norvegicus IPME M NHN:NHO MET106d:ASP104a 127 ERK2 Rattus norvegicus 3ERK M CHO:NHN:NHO ASP104a:MET106d:MET106a 128 MAPK14 Human 4ERK M NHN:CHO MET109d:HIS107a 130 MAPK14 Human 1BL6 M NHN:CHO MET109d:HIS107a 131 MAPK14 Human 1BL7 M NHN:CHO MET109d:HIS107a 132 MAPK14 Human 1BMK M NHO ASP168d 132 MAPK14 Human 1KV1 M NHO ASP168d	120	JNK3	Human	1PMU	M	NHN:CHO	MET149d:GLU147a
123 INSR Human IRQQ M NHN:NHO MET1079d:GLU1077a 124 ERK2 Human 1GAG M NHN:NHO MET108d:ASP106a 125 ERK2 Human 1TVO M NHN:CHO MET108d:HIS106a 126 ERK2 Rattus norvegicus 1PME M NHN:NHO MET106d:ASP104a 127 ERK2 Rattus norvegicus 3ERK M CHO:NHN:NHO ASP104a:MET106d:MET106a 128 MAPK14 Human 4ERK M NHN:CHO MET109d:HIS107a 130 MAPK14 Human 1BL6 M NHN:CHO MET109d:HIS107a 131 MAPK14 Human 1BMK M NHO ASP168d 132 MAPK14 Human 1KV1 M NHO ASP168d	121	JNK3	Human	1PMQ	M	CHO:NHN:CHO	MET149a:MET149d:GLU147a
124 ERK2 Human 1GAG M NHN:NHO MET108d:ASP106a 125 ERK2 Human 1TVO M NHN:CHO MET108d:HIS106a 126 ERK2 Rattus norvegicus 1PME M NHN:NHO MET106d:ASP104a 127 ERK2 Rattus norvegicus 3ERK M CHO:NHN:NHO ASP104a:MET106d:MET106a 128 MAPK14 Human 4ERK M NHN:CHO MET109d:HIS107a 129 MAPK14 Human 1BL6 M NHN:CHO MET109d:HIS107a 130 MAPK14 Human 1BL7 M NHN:CHO MET109d:HIS107a 131 MAPK14 Human 1BMK M NHO ASP168d 132 MAPK14 Human 1KV1 M NHO ASP168d	122	INSR	Human	1PMV	M	NHN:NHO	MET1079d:GLU1077a
125 ERK2 Human 1TVO M NHN:CHO MET108d:HIS106a 126 ERK2 Rattus norvegicus 1PME M NHN:NHO MET106d:ASP104a 127 ERK2 Rattus norvegicus 3ERK M CHO:NHN:NHO ASP104a:MET106d:MET106a 128 MAPK14 Human 4ERK M NHN:CHO MET109d:HIS107a 130 MAPK14 Human 1BL6 M NHN:CHO MET109d:HIS107a 131 MAPK14 Human 1BMK M NHO ASP168d 132 MAPK14 Human 1KV1 M NHO ASP168d	123	INSR	Human	1RQQ	M	NHN:NHO	MET1079d:GLU1077a
126 ERK2 Rattus norvegicus 1PME M NHN:NHO MET106d:ASP104a 127 ERK2 Rattus norvegicus 3ERK M CHO:NHN:NHO ASP104a:MET106d:MET106a 128 MAPK14 Human 4ERK M NHN:CHO MET109d:HIS107a 129 MAPK14 Human 1BL6 M NHN:CHO MET109d:HIS107a 130 MAPK14 Human 1BMK M NHO ASP168d 131 MAPK14 Human 1KV1 M NHO ASP168d	124	ERK2	Human	1GAG	M	NHN:NHO	MET108d:ASP106a
127 ERK2 Rattus norvegicus 3ERK M CHO:NHN:NHO ASP104a:MET106d:MET106a 128 MAPK14 Human 4ERK M NHN:CHO MET109d:HIS107a 129 MAPK14 Human 1BL6 M NHN:CHO MET109d:HIS107a 130 MAPK14 Human 1BL7 M NHN:CHO MET109d:HIS107a 131 MAPK14 Human 1BMK M NHO ASP168d 132 MAPK14 Human 1KV1 M NHO ASP168d	125	ERK2	Human	1TVO	M	NHN:CHO	MET108d:HIS106a
128 MAPK14 Human 4ERK M NHN:CHO MET109d:HIS107a 129 MAPK14 Human 1BL6 M NHN:CHO MET109d:HIS107a 130 MAPK14 Human 1BL7 M NHN:CHO MET109d:HIS107a 131 MAPK14 Human 1BMK M NHO ASP168d 132 MAPK14 Human 1KV1 M NHO ASP168d	126	ERK2	Rattus norvegicus	1PME	M	NHN:NHO	MET106d:ASP104a
129 MAPK14 Human 1BL6 M NHN:CHO MET109d:HIS107a 130 MAPK14 Human 1BL7 M NHN:CHO MET109d:HIS107a 131 MAPK14 Human 1BMK M NHO ASP168d 132 MAPK14 Human 1KV1 M NHO ASP168d	127	ERK2	Rattus norvegicus	3ERK	M	CHO:NHN:NHO	ASP104a:MET106d:MET106a
130 MAPK14 Human 1BL7 M NHN:CHO MET109d:HIS107a 131 MAPK14 Human 1BMK M NHO ASP168d 132 MAPK14 Human 1KV1 M NHO ASP168d	128	MAPK14	Human	4ERK	M	NHN:CHO	MET109d:HIS107a
131 MAPK14 Human 1BMK M NHO ASP168d 132 MAPK14 Human 1KV1 M NHO ASP168d	129	MAPK14		1BL6	M	NHN:CHO	MET109d:HIS107a
132 MAPK14 Human 1KV1 M NHO ASP168d	130		Human	1BL7	M		MET109d:HIS107a
	131				M		
	132		Human	1KV1	M		ASP168d
	133	MAPK14	Human	1KV2	M	NHN:CHO	MET109d:HIS107a
	134				M		
	135						
	136				M		
	137						
	138						
	139						
140 MAPK14 Human 1WBO M NHN:CHO MET109d:HIS107a	140	MAPK14	Human	1WBO	M	NHN:CHO	MET109d:HIS107a

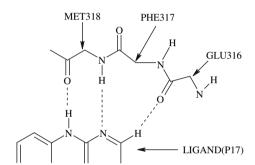
Table 3 continued

0.	Kinase sub-family	Source	PDB ID	M/S	Synthon type	Residue
41	MAPK14	Human	1WBS	M	NHN:CHO	MET109d:HIS107a
42	MAPK14	Human	1WBT	M	NHO	ASP168d
43	MAPK14	Human	1WBV	M	NHN:NHO	MET109d:HIS107a
44	MAPK14	Human	1WBW	M	NHN:CHO	MET109d:HIS107a
45	MAPK14	Human	1YQJ	S	ОНО	ASP150a
46	MAPK14	Human	1ZZ2	M	CHO:NHN	HIS107a:MET109d
47	MAPK14	Human	1A9U	M	CHO:NHN:CHO	HIS107a:MET109d:MET109a
48	MAPK14	Human	1DI9	M	NHO:NHO	MET109d:HIS107a
49	MAPK14	Human	1M7Q	M	NHO:NHO:NHO	HIS107a:MET109d:GLY110d
50	MAPK14	Human	10UY	M	NHO:NHO	MET109d:GLY110d
51	MAPK14	Human	10VE	M	NHN:NHO	MET109d:HIS107a
52	MAPK14	Mus Muusculus	1W7H	M	NHN:NHO	MET109d:HIS107a
53	MET	Human	1YWR	M	NHO:NHO	PRO1158a:MET1160d
54	Nucleoside-diphosphate kinase	Dictyostelium discoideum	1R0P	S	NHO:NHO	LYS16d:HIS122d
55	P56-LCK	Human	1BUX	M	NHO:NHO:NHO	LYS60a:LYS60d:HIS58a
56	P56-LCK	Human	1IJR	M	CHO:NHN:NHO	MET319a:MET319d:GLU317a
57	PDK1	Human	1QPE	M	NHO:NHO	SER160a:ALA162d
58	PDK1	Human	1UU3	M	NHO:NHO	SER160a:ALA162d
59	PDK1	Spodoptera frugiperda	1UVR	M	NHO:NHO	SER160a:ALA162d
50	PDK1	Human	1UU9	M	NHO:NHO	SER160a:ALA162d
1	PDK1	Human	1UU7	M	NHO:NHO	SER160a:ALA162d
62	PDK1	Human	1UU8	M	NHO:NHO	SER160a:ALA162d
53	Phosphoinositide 3 Kinase Gamma	Sus scrofa	10KZ	M	OHO: NHO	GLU880a:VAL882d
54	Phosphoinositide 3 Kinase Gamma	Human	1E8W	M	NHO	VAL882d
55	Phosphoinositide 3 Kinase Gamma	Sus scrofa	1E8Z	M	NHO	VAL882d
66	Phosphoinositide 3-Kinase Gamma	Sus scrofa	1E7V	M	NHO	VAL882d
67	Phosphoenolpyruvate Carboxykinase	Human	1E90	M	NHO	PHE530d
68	Phosphoenolpyruvate Carboxykinase	Human	1M51	M	NHO	PHE530d
59	Phosphoglycerate kinase	Sus scrofa	1NHX	M	NHO	GLY312a
70	Phosphoglycerate kinase	Trypanosoma brucei	1KF0	M	NHO	ALA314a
71	PKA	Human	16PK	M	NHO	VAL123d
72	PKA	Human	1BX6	M	NHO	VAL123d
73	PKA	Human	1RE8	M	NHO	VAL123d
74	PKA	Human	1REK	M	NHN:NHO	VAL123d:GLU121a
75	PKA	Human	1BKX	M	NHO	VAL123d
76	PKA	Human	1REJ	M	NHN:NHO	VAL123d:GLU121a
7	PKA	Human	1FMO	M	NHN:NHO	VAL123d:GLU121a
8	PKA	Human	1JBP	M	NHN:NHO	VAL123d:GLU121a
79	PKA(alpha)	Human	1RDQ	M	NHN:NHO	VAL123d:GLU121a
30	PKA(alpha)	Human	1CDK	M	NHN:NHO	ALA123d:GLU121a
31	PKA(alpha)	Human	1Q24	M	NHO:NHO	ALA123d:GLU121a
32	PKA(alpha)	Human	1SZM	M	NHN:CHO	VAL123d:GLU121a
33	PKA(alpha)	Human	1Q8T	M	NHN:CHO	VAL123d:GLU121a
34	PKA(alpha)	Human	1Q8U	M	NHN:CHO:CHO	VAL123d:GLU121a:VAL123a
35	PKA(alpha)	Human	1Q8W	M	NHN:NHO	VAL123d:GLU121a

Table 3 continued

Tabl	e 3 continued					
S. no.	Kinase sub-family	Source	PDB ID	M/S	Synthon type	Residue
186	PKA(alpha)	Human	1STC	M	NHN:CHO	VAL123d:GLU121a
187	PKA(alpha)	Human	1YDR	M	NHN:CHO	VAL123d:GLU121a
188	PKA(alpha)	Human	1YDS	M	NHN:CHO	VAL123d:GLU121a
89	PKA(beta)	Sus scrofa	1YDT	_	_	_
190	Protein kinase C-iota	Human	1CTP	M	NHO:NHO:CHO	GLU324a:VAL326d:VAL326a
91	Protein kinase C-iota	Human	1ZRZ	M	СНО	HIS42a
92	PLK1	Human	1KPF	_	_	_
93	PIM-1	Human	1UMW	M	NHO	GLU121a
94	TGFbetaR1	Human	1XWS	_	_	
95	TGFbetaR1	Human	1RW8	M	NHN:CHO	HIS283d:ASP281a
96	Thymidine kinase	Herpes simplex virus	1PY5	S	NHO	GLN125d
.97	Thymidine kinase	Herpes simplex virus	1E2K	S	NHO	GLN125d
198	Thymidine kinase	Herpes simplex virus	1E2N	S	NHO	GLN125d
99	Thymidine kinase	Herpes simplex virus	1E2P	S	NHO:NHN	GLN125d: ARG176d
200	Thymidine kinase	Ureaplasma urealyticum	1QHI	M	NHO:NHO	PHE128d:LYS1880a
01	Thymidine kinase	Human herpesvirus 1	1XMR	S	NHO	GLN125d
02	Thymidine kinase	Human herpesvirus 2	2KI5	S	NHO	GLN125d
203	Thymidine kinase	Herpes simplex virus	1P7C	S	NHO	GLN125d
204	Thymidylate kinase	Human	1E2L	S	NHO	ARG76a
.05	Thymidylate kinase	Human	1E9A	S	NHO	ARG76a
206	Thymidylate kinase	Human	1E9B	S	NHO	ARG76d
07	Thymidylate kinase	Human	1E9C	S	NHO	ARG76d
80.	Thymidylate kinase	Human	1E9D	S	NHO	ARG76d
.09	Thymidylate kinase	Human	1E9E	S	NHO	ARG76d
10	Thymidylate kinase	Human	1E98	S	NHO	ARG76d
211	Thymidylate kinase	Saccharomyces cerevisiae	1E9F	S	NHO	ARG73d
12	Thymidylate kinase	Escherichia coli	3TMK	S	NHO:NHO	ARG78d:GLN109d
13	Thymidylate Kinase	Human	5TMP	S	NHO	ARG76d
214	Thymidylate Kinase	Human	1E2D	S	NHO	ARG76d
215	Thymidylate Kinase	Human	1E2E	S	NHO	ARG76d
216	Thymidylate Kinase	Human	1E2F	S	NHO	ARG76d
17	Thymidylate Kinase	Human	1E2G	S	NHO	ARG76d
218	Thymidylate Kinase	Mycobacterium tuberculosis	1E2Q	S	NHO	ARG74d
219	Thymidylate Kinase	Mycobacterium tuberculosis	1MRN	S	NHO	ARG74d
220	Thymidylate Kinase	Mycobacterium tuberculosis	1MRS	S	NHO	ARG74d
221	Thymidylate Kinase	Mycobacterium tuberculosis	1G3U	S	NHO	ARG74d
222	Thymidylate kinase	Escherichia coli	1W2G	S	NHO	GLN109d
223	Tyrosine kinase LCK	Human	4TMK	M	NHO	HIS58a

Table 3 continued

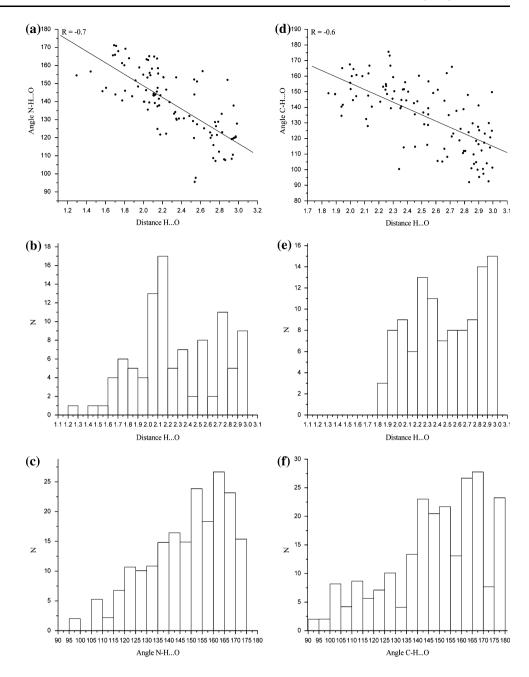

S. no.	Kinase sub-family	Source	PDB ID	M/S	Synthon type	Residue
224	Uridine-cytidine kinase 2	Human	1FBZ	S	NHO	ARG176d
225	Uridine-cytidine kinase 2	Human	1UEI	S	NHO	ARG176d
226	Uridine-cytidine kinase 2	Human	1UDW	S	NHO	ARG176d
227	Uridylmonophosphate/ cytidylmonophosphate kinase	Dictyostelium discoideum	1XRJ	M	NHO	VAL65d
228	Uridylmonophosphate/ cytidylmonophosphate kinase	Dictyostelium discoideum	1QF9	M	NHO	VAL65d
229	Uridylmonophosphate/ cytidylmonophosphate kinase	Dictyostelium discoideum	3UKD	M	NHO	VAL65d
230	VEGFR2	Human	4UKD	M	CHO:NHN:NHO	GLU915a:CYS917d:CYS917a
231	VEGFR2	Human	1Y6A	M	CHO:NHN:NHO	GLU915a:CYS917d:CYS917a
232	VEGFR2	Human	1Y6B	M	NHN:NHO	CYS917d:GLU915a
233	Wee1A kinase	Human	1YWN	M	NHN:NHO	CYS379d:GLU377a

C-H···O hydrogen bond geometry demonstrated here is thus similar to the strong N-H···O hydrogen bond in its directional properties.

Hydrogen bond motif and synthons

The concept of supramolecular synthons is well known in small molecule crystallography and crystal engineering (Desiraju 1995). Synthons are structural units within supermolecules, which can be formed and/or assembled by known or conceivable synthetic operations involving intermolecular interactions. If synthon is formed between the same functional group it is called as homosynthon, and if it is formed between two different functional groups it is referred to as a heterosynthon (Vishweshwar et al. 2003; Walsh et al. 2003). The existence of synthons in proteinligand complexes has been reported earlier (Sarkhel and Desiraju 2004). In the present context, synthons between various scaffolds present in the ligand molecules and the main/side chain of proteins in the active site (Table 3) are considered. The abbreviation for synthons is according to the short form of the hydrogen bond types. For example "CHO:NHN:NHO" represents a synthon formed by the combination of C-H···O:N-H···N:N-H···O types of hydrogen bonds (Scheme 2).

Both homosynthons and heterosynthons exist in the protein–ligand complexes of kinases. The synthons are formed with a combination of N–H···O, C–H···O, and N–H···N hydrogen bonds (Table 3). Rarely do O–H···O hydrogen bonds participate in the synthon formation. The percentages of synthons formed with one hydrogen bond (single-point) is 36%, two hydrogen bonds (two-point), 42%, three hydrogen bonds (three-point), 21% and four-point, 0.4%. Certain residues in each sub-family frequently


Scheme 2 Typical CHO:NHN:NHO synthon between main chain and ligand (PDB ID 1M52)

interact with the ligand. Residues frequently interacting with ligands in different sub-families are: cAMP-dependent protein kinase sub-family, VAL123 and GLU121; CDK2 sub-family, GLU81 and LEU83; CHK1 sub-family CYS87 and GLU85; PKA sub-family, VAL123 and GLU121. These are the conserved residues present in the particular sub-family. These residues have N-H···O, C-H···O or N-H...N hydrogen bonds while interacting with various ligands within a sub-family. For example, GLU81 in the CDK2 sub-family interacts with ligands through N-H···O, C-H···O and N-H···N hydrogen bonds. Therefore in a particular kinase sub-family, the conserved amino acid residues always participate in hydrogen bond interactions with a variety of ligands, so that a particular synthon is retained intact. This reflects the multifaceted hydrogen bond capability of key residues in any particular kinase sub-family. Sometimes, these types of hydrogen bonds are retained in a synthon of a particular subfamily, the best example being sub-families GSK3b, EGFR, INSR, PDK1, and a few members of PKA (Table 3).

Synthons in GSK3b sub-family are composed of a similar hydrogen bond patterns (Fig. 3). VAL135 and

Fig. 2 Hydrogen bond geometry for {NHO BD LA} in Gly (a-c) and {CHO LD BA} in Glu (d-f). In each case the inverse length-angle scatterplot is followed by *histograms* of distances and cone-corrected angular distributions

ASP133 are observed to have NHO:NHO:NHO synthons, which are retained across a variety of ligands. However, swapping of donor-acceptor pairs is observed between ligand and protein. Significantly, however, this swapping never hinders the formation of desired synthons. In summary, in each particular sub-family of kinase, various ligands bind to the key residues of the main chain with a typical synthon pattern. Of course, these inhibitors certainly have similar functional groups and scaffolds, which support such interaction consistency.

The thymidine/thymidylate kinase is unusual because ligands for this sub-family generally form the NHO synthon with the side chain residue GLN125 (Fig. 4).

Role of conserved residue

The kinase domains across many sub-families share a great percentage of similarity in the active site residues. Hence there is a chance that residues at the same position might be involved in ligand binding. To verify this assumption an active site sequence alignment for 35 sub-families of human source was carried out, each structure representing a sub-family (Table 3, PDB ID with italics). It was observed that residues interacting with ligands are aligned at a particular position across all sub-families with very few exceptions. The exceptions (Fig. 5) are interactions involving side chains and adjacent residues. This finding

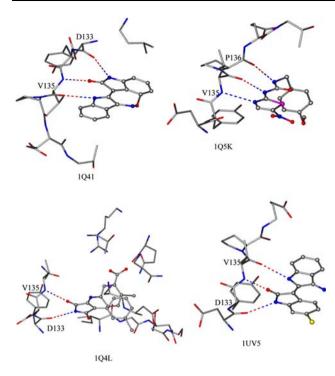


Fig. 3 Synthons formed by N-H···O hydrogen bonds in key residues, are shown for the GSK3b sub-family with the respective PDB ID

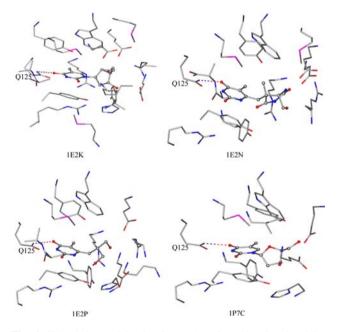
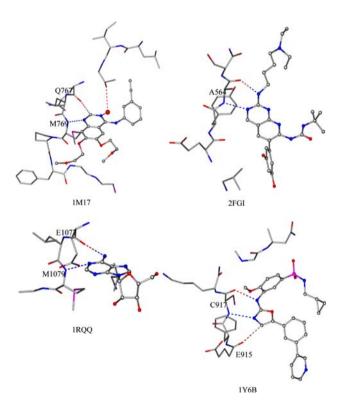


Fig. 4 Side chain participation in synthon formation in Thymidine kinase sub-family

reveals that residues determining the ligand interaction with the main chain are conserved across all the kinase subfamilies. Despite the variation in amino acid substitutions across kinase sub-families, the hydrogen bond signature pattern is always retained in the conserved residues. The consistency of the strong and weak hydrogen bonds

between protein-ligand complexes across various subfamilies is definitely a matter of great interest. The formation of supramolecular synthons with the amalgamation of strong and weak hydrogen bonds in protein-ligand complexes is vital for ligand specificity and the interplay between the strong and weak hydrogen bonds in supramolecular synthons may be a determining factor for the diversity of ligand interaction to the hinge region of kinase. To verify this hypothesis, the sub-families of receptor tyrosine kinases are discussed here.

The receptor tyrosine kinases considered in the 233 datasets are EGFR, FGFR1, VEGFR2 and INSR. For these receptor tyrosine kinases, the conserved residues interact with ligands in a similar manner (Fig. 6). The amino acid residues involved in ligand binding in these structures are aligned at a particular position (Fig. 5). In EGFR, the interacting residues are MET769 and GLN767. For the FGFR1 sub-family the pertinent residue is ALA564. In VEGFR2, the residues are GLU915, and CYS917. In subfamily INSR, the residues are MET1079 and GLU1077. These residues interact with the ligands through N-H···O, N-H···N hydrogen bonds. Therefore it can be assumed that the sample receptor tyrosine kinases are similar on the basis of supramolecular synthon formed by N-H...O, N-H...N hydrogen bonds. These findings can be extrapolated to the other kinase sub-families also. This finding has a potential role in multikinase targeting, where a single molecule can be targeted against several kinases (Wilhelm et al. 2006).


Active site solvation

Solvation and desolvation are the crucial phenomena, which occur in the process of ligand receptor interaction (Ladbury 1996). During binding, the active site undergoes a rapid desolvation process to accommodate the ligand. This process finally results in the release of ordered water favoring the formation of the ligand-receptor complex. While being separate, both enzyme and substrate force the neighboring water molecules into an ordered shell. Binding of substrate to enzyme releases some of the ordered water, and the resulting increase in entropy provides a thermodynamic push toward the formation of the ligand-receptor complex. Some of the ordered water molecules in the receptor are unaffected by this rapid desolvation process and are retained in the active site due to their structural and functional importance. These structural/functional waters usually form hydrogen bonds with the neighboring residues or/and ligand and even with water molecules, thus increasing the enthalpy of the final complex and all this stabilizes the ligand-protein complex. A classification of water molecules in the active sites of kinases was carried out, based on the accessible surface area (exposure). Buried

Fig. 5 Active site sequence alignments for 35 entries of human kinases, each representing a subfamily. Key residues are colored *red*. 'M' stands for main chain and 'S' for side chain

lokz.pdb	KVPYVTRERDVMSRLDHPFFVKLYFTFQDDEKLYFGLSYAKNGELLKYIRKIGSFDETCT	M
1bkx.pdb	MVMEYVAGGEMFSHY	M
1cdk.pdb	KVLQHTELFLVKLEYMVMEYVPGGEMFSHYR	M
1zrz.pdb	VEKVFASFLVGLHSCLFFVIEYVNGGDLMFHMQ	M
loml.pdb	KEIILCNIVKLLDSLIFEYVNNT-DFKVHD	M
1p4f.pdb	LHELILELVAGG-ELD-HD	M
1nvq.pdb	IEIINLNVVKFYGYLFLEYCSGGELFDRHDI	M
1py5.pdb	WREAEIYQILGFIAADLWLVSDYHEHGSLFDYHDL	M
1x8b.pdb	SNAREVAHVVRYFSAWMLIQNEYCNGGSLADAHD	M
1fpu.pdb	LKEAAVMKEIKHNLVQLLGVCFYIITEFMTYGNLLDYA	M
1qpe.pdb	LAEANLMKLVRLYAVVIYIITEYMENGSLVDF	M
2hck.pdb	KLHAYIITEFMAKGSLLDFK	M
1m17.pdb	DEAYVMAVVCRLLGICVQLITQLMPFGCLLDYR	M
1xws.pdb	EVLLSVIRLLDWFVLILERPEPVQDLFDF	M
1rqq.pdb	EEFEMVVRLLGVVMELMAHGDLKSYR	M
1r0p.pdb	LVVLPYMKHGDLRNFN	M
2fgi.pdb	DLISEMEMMKIG-KHNIINLLGACTLYVIVEYASKGNLREYLQA	M
1y6b.pdb	ALMSELKILIVVNLLGACTLMVIVEFCKFGNLSTYLR	M
1t46.pdb	LMSELKVLSYLGNHNIVNLLGACTTLVITEYCCYGDLLNFRVGMFLA	M
1byg.pdb	LVQLLGDYLRS	M
lunl.pdb	EILNIVRLHDVLTLVFEFCDQDLKKY	M
1gz8.pdb	IVKLLDLVFEFLHQDLKK	M
1q41.pdb	ELMLIVRLRYNLVLDYVPETVY	M
1pme.pdb	EIILLEIIGINDIIVYLVTHLMGAD	M
1pmn.pdb	HRAELLMIISLLNVFVYLVMELMDANLC	М
1a9u.pdb	HRTELLLKH-MVIGLLDVFVYLVTHLMGAD	M
1o4a.pdb	KNVKHYKIRYITSR	M
1nzl.pdb	KNVKHYKIRF-YITSR	
1fbz.pdb	DVVKHYKIRNFYISPR	M
1b55.pdb	LFLSYYEYS	M
ludw.pdb	QFNFDHPAFDVYDFVSHSRKFEGILAFVDTTRLSRRVR	S
1e8z.pdb	QDMLILLRLPYGCISKIGMIEIVKDATTIAKIQ	M
1e9a.pdb	VDHSVHLLFSANRWEQVDRYAFSGVAFTGA	M
1umw.pdb	NYMSEHLLKAGAWFR	M
1m51.pdb	PLSEAVNWFRKDGKFLWPGFGENSRVLMLGHIL	M

Fig. 6 Conserved synthon across receptor tyrosine kinases (EGFR;1M17, FGFR1; 2FGI, INSR;1RQQ, VEGFR2;1Y6B)

water is of structural and/or functional significance while partially accessible or completely accessible water (category W1T to W9T) is less important. Structurally, the buried water molecules (W0T) are important because, very often they form hydrogen bonds, and sometimes they mediate hydrogen bonds between protein and ligand (Bottoms et al. 2002). Functionally, these water molecules may also participate in enzyme catalysis.

The dataset contains a total of 40,944 water molecules, out of which 6,066 (15%) are present in the active sites. This means that, on average, there are 176 and 26 water molecules in the entire protein and in the active site, respectively, per structure. The percentage distribution of these water molecules in various categories based on percentage of exposure, and also the hydrogen bond between water and ligand is shown in Fig. 7.

The majority of the active site waters are inaccessible (category W0T). This suggests that the active sites are present deep inside the proteins. Very often, the water molecules are enclosed even at the protein-ligand interface. The hydrogen bonds considered here are confined to those between ligand and water. The various types of hydrogen bonds are {OHN WD LA}, {OHO WD LA}, {CHO LD WA}, {NHO LD WA}, {OHO LD WA}. Approximately 60% of the hydrogen bonds are manifested by the W0T category of the active site water molecules. The hydrogen bonds between ligand and water are

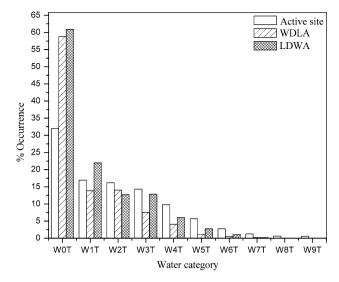


Fig. 7 Hierarchical classification of active site water molecules. Also shown is the percentage of interacting water as an acceptor and as donor

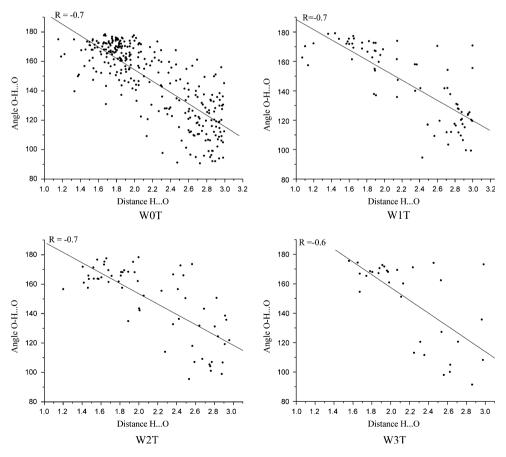

observed up to the category W6T. Beyond this an exposed water molecule rarely interacts with the ligand. The hydrogen bond geometry also depends on the water category. Hydrogen bonds geometries are better represented in the W0T category (Fig. 8). The quality of hydrogen bonding gradually decreases from W1T to W6T. For

Fig. 8 Inverse length-angle $(d-\theta)$ scatterplots for {OHO WD LA} for various categories of water (W0T–W3T). Notice the poor correlation in W3T

example, the d- θ scatterplot for {OHO WD LA} is better represented in the W0T category, with the correlation becoming poorer as one moves from W1T to W3T (Fig. 8). This suggests that the buried water molecules in the active sites very often participate in hydrogen bonds with the ligand. Hence they are structurally important.

Conclusions

Strong (N-H···O, O-H···O, N-H···N) and weak (C-H···O C- $H \cdot \cdot \cdot N$) hydrogen bonds in the active sites of the kinase family have been studied in a dataset of 233 protein-ligand complexes. The kinase family is dominated by nonpolar and charged residues. Residues like Leu, Glu and His, frequently accept hydrogen bonds from the ligand, while Gly and Leu are favoured donors. Both strong and weak hydrogen bonds are of comparable importance in ligand binding. In this context, the acceptor capacity of main chain Glu is noteworthy and the geometry of C-H···O hydrogen bonds to Glu is on par with the strong hydrogen bonds in the active sites. The hydrogen bonded supramolecular synthons formed between main/side chain and ligand atoms is a typical characteristic of the kinase family. These synthons are formed by an amalgamation of strong and weak hydrogen bonds. The synthon patterns are unique to kinase

sub-families. The relationships between the sub-families are established on the basis of similar synthon patterns. The similarities among synthon patterns across sub-families arise due to the conserved residues in the active sites of kinase. The active site water molecules exist in a variety of environments. Water molecules, which are least exposed, usually take part in hydrogen bonding with the ligands. It can be concluded that along with strong hydrogen bonds, weak hydrogen bonds are also important in the kinase family. This information is a valuable asset for kinase inhibitor design, especially in the realm of multikinase inhibitor design.

Acknowledgments S. K. P. thanks Prof. Gautam R. Desiraju, School of Chemistry, University of Hyderabad, Hyderabad, for his helpful guidance in preparing the manuscript. S. K. P. also thanks the chemical computing group (CCG) for technical support and CSIR for fellowship.

References

- Aparna V, Rambabu G, Panigrahi SK, Sarma JARP, Desiraju GR (2005) Virtual screening of 4-anilinoquinazoline analogs as EGFR kinase inhibitors: importance of hydrogen bonds in the evaluation of poses and scoring functions. J Chem Inf Model 45:725–738
- Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci USA 101:16789– 16794
- Baker EN, Hubbard RE (1984) Hydrogen bonding in globular proteins. Progr Biophys Mol Biol 44:97–179
- Bartlett GJ, Porter CT, Borkakoti N, Thornton JM (2002) Analysis of catalytic residues in enzyme active sites. J Mol Biol 324:105–121
- Bikadi Z, Demko L, Hazai E (2007) Functional and structural characterization of a protein based on analysis of its hydrogen bonding network by hydrogen bonding plot. Arch Biochem Biophys 461:225–234
- Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank Nucleic Acid Res 28:235–242. http://www.rcsb.org/pdb
- Brandl M, Weiss MS, Jabs A, Sühnel J, Hilgenfeld R (2001) C–H $\cdots\pi$ interactions in proteins. J Mol Biol 307:357–377
- Bridges AJ (2001) Chemical inhibitors of protein kinases. Chem Rev 101:2541–2571
- Bottoms CA, Smith PE, Tanner JJ (2002) Protein Sci 11:2125–2137 Cohen P (2002) Protein kinases—the major drug targets of the twenty-first century. Nature Rev Drug Discov 1:309–315
- Dar AC, Wybenga-Groot LE, Sicheri F (2005) The eukaryotic protein kinase domain. In: Cesareni G, Gimona M, Sudol M, Yaffe M (eds) Modular protein domains, chap 9. Wiley-VCH, Verlag GmbH & Co, KGaA
- Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology, chaps 1 and 5. Oxford University Press, Oxford
- Desiraju GR (1995) Supramolecular synthons in crystal engineerings A—new organic synthesis. Angew Chem Int Ed 34:2311–2327
- Denessiouk KA, Johnson MS (2003) "Acceptor-donor-acceptor" motifs recognize the watson-crick, hoogsteen and sugar "donor-acceptor-donor" edges of adenine and adenosinecontaining ligands. J Mol Biol 333:1025-1043

- Gitlin I, Carbeck JD, Whitesides GM (2006) Why are proteins charged? Networks of charge-charge interactions in proteins measured by charge ladders and capillary electrophoresis. Angew Chem Int Ed 45:3022–3060
- Glusker JP (1995) Intermolecular interactions around functional groups in crystals: data for modeling the binding of drugs to biological macromolecules. Acta Cryst D51:418–427
- Halgren T (1996) Merck molecular force field. I. Basis, form, scope, parameterisation and performance of MMFF94. J Comput Chem 17:490–519
- Hanks SK, Hunter T (1995) Protein kinases the eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9:576–596
- Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680. ClustalW WWW Service at the European Bioinformatics Institute http://www.ebi.ac.uk/clustalw
- Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, Berlin
- Klaholz B, Moras D (2002) C–H···O hydrogen bonds in the nuclear receptor RAR γ -a potential tool for drug selectivity. Structure 10:1197–1204
- Koellner G, Steiner T, Millard CB, Silman I, Sussman JL (2002) A neutral molecule in a cation-binding site: specific binding of a PEG-SH to acetylcholinesterase from Torpedo californica. J Mol Biol 320:721–725
- Ladbury JE (1996) Just add water! The effect of water on the specificity of protein-ligand binding sites and its potential application to drug design. Chem Biol 3:973–980
- Lipinski CA, Lombardo F, Dominy BW, Feeney PL (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25
- Levitzki A (2003) Protein kinase inhibitors as a therapeutic modality.

 Acc Chem Res 36:462–469
- Mao L, Wang Y, Lie Y, Hu X (2004) Molecular determinants for ATP-binding in proteins: a data mining and quantum chemical analysis. J Mol Biol 336:787–807
- MOE Program, Version 2006–08 Chemical Computing Inc, Sherbrooke St. W, Montreal, Quebec, Canada, H3A 2R7
- Naumann T, Matter H (2002) Structural classification of protein kinases using 3D molecular interaction field analysis of their ligand binding sites: target family landscapes. J Med Chem 45:2366–2378
- Panigrahi SK, Desiraju GR (2007) Strong and weak hydrogen bonds in the protein-ligand interface. Proteins 67:128-141
- Panigrahi SK, Desiraju GR (2004) Homology modelling in protein structure prediction: epidermal growth factor receptor kinase domain. Nat Acad Sci Lett (India) 27:1–11
- Pierce AC, Sandretto KL, Bemis GW (2002) Kinase inhibitors and the case for CH···O hydrogen bonds in protein–ligand binding. Proteins 49:567–576
- Pierce AC, ter Haar E, Binch HM, Kay DP, Patel SR, Li P (2005) CH···O and CH···N hydrogen bonds in ligand design: a novel quinazolin-4-ylthiazol-2-ylamine protein kinase inhibitor. J Med Chem 48:1278–1281
- Sarkhel S, Desiraju GR (2004) N-H···O, O-H···O, and C-H···O hydrogen bonds in protein-ligand complexes: strong and weak interactions in molecular recognition. Proteins 54:247-259
- Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41:48–76
- Sugen (2002) Structure and Phylogeny of the Protein Kinases, Salk Institute, La Jolla, CA. http://198.202.68.14/human/kinome/ phylogeny.html and http://kinasedb.ontology.ims.u-tokyo.ac.jp
- The Protein Kinase Resource, SDSC, UC, San Diego, MC, 2004, http://www.kinasenet.org/pkr

- Tiwari A, Panigrahi SK (2007) HBAT: a complete package for analysing strong and weak hydrogen bonds in macromolecular crystal structures. In Silico Biol 7:0057
- Vishweshwar P, Nangia A, Lynch VM (2003) Molecular complexes of homologous alkanedicarboxylic acids with isonicotinamide: X-ray crystal structures, hydrogen bond synthons, and melting point alternation. Cryst Growth Des 3:783–790
- Vieth M, Higgs RE, Robertson DH, Shapiro M, Gragg EA, Hemmerle H (2004) Kinomics-structural biology and chemogenomics of kinase inhibitors and targets. Biochim Biophys Acta 1697:243– 257
- Wang R, Fang X, Lu Y, Yang CY, Wang S (2005) The PDBbind database: methodologies and updates J Med Chem 48:4111–4119. http://www.pdbbind.org
- Walsh RDB, Bradner MW, Fleischman S, Morales LA, Moulton B, Rodríguez-Hornedo N, Zaworotko M (2003) Crystal engineering of the composition of pharmaceutical phases. J Chem Commun 2:186–187. doi:10.1039/b208574g
- Williams DH, Mitchell T (2002) Latest developments in crystallography and structure-based design of protein kinase inhibitors as drug candidates, Curr Opin Pharmacol 2:567–573
- Williams MA, Goodfellow JM, Thornton JM (1994) Buried waters and internal cavities in monomeric proteins. Protein Sci 3:1224–1235
- Wilhelm S, Carter C, Lynch M., Lowinger T, Dumas J, Smith RA, Schwartz B., Simantov R, Kelley S (2006) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5:835–844

